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COMMENT 

Extrapolation of transfer matrix data for percolation and 
lattice animals by the Romberg-Beleznay algorithm 

J KertCszt 
Institute for Theoretical Physics, University of Cologne, D-5000 Koln 41, West Germany 

Received 5 June 1985 

Abstract. Using Beleznay’s modified Romberg algorithm we re-analyse the transfer matrix 
data for the two-dimensional problems of Derrida and Stauffer. We get for percolation: 
pc  = 0.592 73(6) for the threshold of the square site problem, U = 1.3330(7) for the correlation 
length exponent and w = 1.9(3) for the correction exponent; in the case of lattice animals 
x, = 0.246 152(4) (square lattice), x, = 0.192 94(1) (triangular lattice critical fugacity) and 
U = 0.640 62( 10) (radius exponent). 

The transfer matrix method leads to very accurate results on finite two-dimensional 
strips, which can be used to obtain approximate values of critical parameters by 
extrapolation (Nightingale 1982). The accuracy of the estimates depends, besides the 
number of data used and their relevant number of digits, on the speed of the conver- 
gence, and therefore on the method of extrapolation too. Recently Beleznay (1985) 
proposed a so-called modified Romberg algorithm to extrapolate finite size scaling 
data efficiently. The aim of the present comment is to use Beleznay’s method to evaluate 
the new transfer matrix data for two-dimensional percolation and lattice animal 
problems calculated by Derrida and Stauffer (1985, hereafter referred to as DS). 

In Beleznay (1986) it is shown how to order the input data and form a Romberg-type 
triangular array. In the case of critical finite size behaviour the critical exponent is a 
parameter of this array. The convergence along the diagonals is much faster than in 
the original data and therefore the last value in the principal diagonal can be regarded 
as the best estimate. Moreover, if the exponent is known, an error of this estimate can 
also be given. Beleznay (1986) distinguished three different cases. 

(i)  Method A. If neither the limiting value nor the exponent is known, then a 
minimisation of the expression of the error gives the approximate values. 

(ii) Method B. If the limiting value is known the exponent can be determined by 
forcing the ‘estimate’ to give the correct value. 

(iii) Method C. If the exponent is known the estimated limiting value can be 
calculated and the accuracy determined. 

DS used the transfer matrix technique for three different geometries: square lattice 
with transfer direction along a lattice axis (S l ) ;  square lattice with transfer direction 
along the diagonal (S2) and triangular lattice (T). 

For percolation we first applied method A, forgetting for a while that p c  is known 
for geometry T (= 4). Using all data and even-odd analysis, omitting the first 1, 2 and 
3 terms, we got the impression that, fortunately, the data for T are the most reliable, 
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i.e. in this case the result was not very much changed. By simple minimisation of the 
error and using all data we obtain p ,  = 0.500 004 and for the critical exponent p, which 
describes the finite size scaling of the pc  data, the value p = 2.6 was found. Moreover 
the data for S1 were found to be the worst, in accordance with DS (D Stauffer, private 
communication). 

Then we applied method B in order to get an estimate for p and this led to p = 2.649. 
Now method C could he used for the geometries S1 and S2: p c  = 0.592 72(25) (S l )  and 
0.592728(55) (S2). Again, the data for S1 turn out to be quite poor. The errors are 
in the last digits and calculated from the Romberg error formula (Beleznay 1986), i.e. 
the error for S2 is about five times smaller than for S1. If one could believe that the 
nice coalescence of the results for S1 and S2 is not accidental, the estimated value for 
p ,  for the square site percolation could be given as pc  = 0.592 73( 1) .  

In order to extrapolate the data for the critical exponent U, we have to use the 
relation p = w + 1/ v (Derrida and de Seze 1982), o describing the finite size scaling 
of the U data. Since we know already the estimate for p, the limiting value of U can 
be calculated self-consistently. We get U = 1.3330(7) which fits well with the ‘exact’ 
value of $. Repeating the same calculation for the geometries S1 and S2, one always 
gets results which are compatible with $, but with much larger errors. On the other 
hand, method A can again be used: then the exponent w is also determined. From 
these calculations we have the estimate w = 1.9(3). 

We also evaluated the data for the exponent 7. Since there is no a priori known 
exponent which describes the finite size scaling of this series, we applied method A. 
From geometry T 7 = 0.208 37 (which should be compared to the ‘exact’ 0.208 333) 
and the correction exponent = 1.95 which suggests the possibility that the finite size 
behaviour of the series for U and 77 are governed by the same correction exponent w. 
Repeating this calculation for the geometries S1 and S2 we get similar, but again worse, 
results. 

For the lattice animals, no solution is known; therefore method A is to be used. 
Again in accordance with DS we have found that one of the geometries, here S1, is 
much superior to the rest. We get for the critical fugacity x, = 0.246 152(2), where the 
error is now estimated by using different samplings from the original set of data. The 
exponent p, describing firlite size scaling, is about 2.8. The similar analysis of the 
radius exponent leads to U = 0.6406( 1 )  with the correction exponent w = 2.1(3); the 
relation p = w + 1/  U seems to be violated. For geometry S2 two minima were first 
found by method A. However, one of them could be excluded by sampling. From 
these data x, = 0.246 156(6), in good agreement with S1, but for the exponent Y = 
0.6414(4), which is in conflict with S1. Similarly, from geometry T U = 0.6414. These 
discrepancies were already recognised by DS. For the critical fugacity on the triangular 
lattice we get x, = 0.192 94( 11, a definitely higher value than that obtained by DS. 

In conclusion, we have analysed the DS data by the modified Romberg algorithm 
proposed by Beleznay (1986). Generally, the method leads to results of the same or 
sometimes higher accuracy as the analysis by DS. The method is easy to carry out, 
excludes much subjectivity and in some cases (method C) it gives a good estimate of 
the errors. Therefore it seems to be a method at least competitive with the other ones 
and possibly better. 

I am grateful to Dietrich Stauffer for the warm hospitality shown at Koln and for his 
suggestion of writing this comment and also to Ferenc Beleznay for discussions, as 
well as to SFB 125 for financial support. 
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